If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x+4.9x^2=0
a = 4.9; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·4.9·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*4.9}=\frac{-20}{9.8} =-2+0.4/9.8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*4.9}=\frac{0}{9.8} =0 $
| 16x+7=-1+17x | | 2x^2+6x–20=0 | | 6y+3/7=1 | | 2x2+6x–20=0 | | -18.1=1.1+x/6 | | 13x-12/6=0 | | 2x+x=x+14 | | 4(5x+3)-2=3(6x+5)-1 | | x2-10=4-28 | | u/5-3.2=-15.7 | | 41x-3=120 | | -0.5x^2+0.75x+3.5=3.6 | | 8.3+v/7=-9.2 | | 12,8=8v | | f(2)=(1/9)^2 | | d2-6d=0 | | -3+8x^2+2x=0 | | 167=4-w | | 104-x=205 | | 2x^2+22+48=0 | | 79-x=162 | | 2-8(-4+3x)=5(x+10) | | -1-5x=-6x+8 | | 8y-5=8y-12 | | 5y+5y+60=0 | | -12=x/7 | | 3z+1/2=z+9/2 | | 5(x1/10)=3x+1/2 | | 2.48x+1.50=36.80 | | 3x+11=5x+11=90 | | 3x+11=5x+11=180 | | -2x-2(-2x+6)+8=-10 |